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The uniqueness of solutions of some integral  equations of t r anspor t  theory  is analyzed for a 
specific shape of the kerne ls  of these equations. 

w I. Methods of determining the sca t te r ing  amplitudes of severa l  quantum-mechanical  par t ic les  were  
developed in great  detail  in recen t  yea r s .  These  methods a r e  based on Fredholm integral  equations of the 
second kind, descr ibed  in the Green- func t ionformal i sm.  The sys tems  of integral  equations obtained in this 
fo rmal i sm are  equivalent to the Lippman-Schwinger  equation [1], formal ly  genera l ized  to an N-body sys tem 
under the assumption of two-par t ic le  fo rces .  The uniqueness and equivalence,  however,  of the solutions of 
these  sys tems  of equations to the solution of the corresponding Schrtidinger equation was not proved.  

In the present  paper examples are  given for which in the case  of scat ter ing of four or  more  par t ic les  the 
homogeneous integral  equation for the sca t te r ing  amplitude, obtained by the Green-funct ionmethod,  has an in- 
finite number of solutions,  and, consequently,  the inhomogeneous equation also has an infinite number of solu- 
tions. 

Consider f i r s t  the Lippman-Schwinger  equation for the four-body problem,  when two independent pairs  
of par t ic les  (12) and (34) in teract  through the potentials V12 and V34 , r e spec t ive ly  [2]. This equation is [1] 

T (z) = (Vl2 ~- Vs~) ~- (Via-1- V~)Go (z)T (z), (1) 

where  T(z) is the par t ic le  sca t te r ing  opera tor  in the sys tem,  G0(z) is the Green function of f ree  motion of four 
par t ic les ,  and z is the total  energy of the sys tem.  

It is well known that for this problem the Sehr~idinger equation has a unique solution, wri t ten as follows 
in t e r ms  of the sca t te r ing  opera to r s :  

T (z') = t,  z (z12) + t34 (z,,) + it2 (z~2) | t , ,  (z,~). (2 )  

where  t12(z12) and t34(z34) a re  the sca t te r ing  opera to rs  of par t ic le  pai rs  (12) and (34), respec t ive ly ;  z1~ and za4 
a re  the par t ic le  energies  of r elat ive motion in the syst  eros of par t ic les  (12) and (34); z, = z - z 19 34. z .  = z 12 + z 3 4 .  

z12 34 a re  the energies  of r e l a t ive  motion of the two sys tems  of par t ic les  (12) and (34); and the sy~mbol | de-  
not'es a product  of sca t te r ing  opera tors .  We point out that due to the absence of par t ic le  exchange between the 
sys t ems  (12) and (34), each of the energies  z12 and za4 is conserved  in the sca t te r ing  process .  

To wri te  down the in tegral  equation for the amplitude of par t ic le  sca t te r ing  in the sys tem it is n e c e s s a r y  
to de te rmine  the vec to r s  of initial and final s tates  in the four -pa r t i c l e  sys tem.  For  this purpose we use the 
Jacobi  coordinates  in the momentum representa t ion .  The vec to r s  of initial and final s ta tes  of the four f ree  
par t ic les  can then be wri t ten in the fo rm 

<kt2, kaa, k12,34[, [k;2, k34, kz2,34> 0 

respec t ive ly .  Here  k(~ and k'~ a re  the momenta  of r e l a t ive  motion of par t ic les  in the sys t em (a) pr ior  to and 
t following scat ter ing,  and k12,34 and k12,34 a r e  the momenta  of r e l a t ive  motion of the sys tems  (12) and (34) pr ior  

to and following scat ter ing.  In this  case  

z~ 2 = k~2/2~ti2; z3, = k~4/2Fa,, z,2,34 = k~2.~4/2~12.34, 

where Pa  is the reduced  mass  of par t ic les  in s y s t e m a ,  and p~2,~ is the reduced  mass of four par t ic les .  

In these  coordinates  the mat r ix  e lement  of the opera tor  T(z) in (1) is diagonal in the var iable  kt2,~: 
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<k~. ,  ks~, k,2.s,JT(z)lk~, k~4, k~2.~4 > : < k ~  z, k~lT(z')lk~=, k~4>~(k,2,s~--k;2,34).  

We use a model [3] in which an integral  equation is wri t ten  down for the mat r ix  e lement  of the many-par t i c le  
sca t te r ing  opera to r .  In this model the mat r ix  e lement  of the kernel  of Eq. (1) is . 

< k,v k,~lV~60 (z')l q~2, qu > = < k=lV~lqiz> (ztz - -  q2~/2~t z + ix) -~ 8 (k~ - -  qsJ. (3) 

One can then wri te ,  on the basis  of (1), an integral  equation for the amplitude < k12 , k34[T(z, ) [k~2 , k~4 > at the 
energy  surface  in the fo rm  

< kt z, k~lT (z')[ k ~2, k~4 > = (2~) s < ktalV~2] k~2 > ~ (k~ - -  k34) -{- (2#) 3 < k~lVs~ I k34 > 8{ktz - -  k ~2) + 

dq~2 
+ (2=)3 
+~  dq~ 

( 2 = )  -~ 

z ' - 1 ~ / 2 ~ , -  q~/2~,,, + io 
<: k~ IV~ Iqs~ > 

Z' - -  k~2/21alz - -  q]412fJ~ + iO 

< ka, ql2lT(z')lkl~, k,~ > + 

<k=, qz,IT(z')lk[=, k~, > .  (4) 

We note that the denominators  in the integral  t e r m s  of Eq. (4) can be wri t ten in the equivalent fo rm 

- -  ql2/2~q 2 = k ~ / 2 ~ t  z -  q~*/2~t~ + iO, 

Z t 2 I t  2 - - k i 2 / 2 .  t2--q34/2~s~ = k~4/2~t~--  qs41'2~342 -7-' iO. 

We investigate Eq. (4) for  the case  in which the potentials axe separable  [2] and the par t ic le  masses  axe 
equal: 

< k~ IV,21 k ;2 > = ~ g (k,2) g(k;2), 
/ 

< ka, Igs,I k34 > = -.-.---~ r (ks,) ~ (k,~4) (5) 

[the constants G and ~2, as well  as the functions g(k) and t0 (k), a r e  assumed rea l ,  which guarantees  potentials 
being Hermitian].  The pair  amplitudes a r e  hence also sepaxable:  

G g ( k , 2 ) g ( k ~ 2 ) [ l + G f "  dq, 2 g~'(qt2) 
< kt2l t~(k~2/2p)ik~2 > = - -  2"~" [ " ~ - j  (2~t)s ~2,,Rl,/,2~t_ q12/2+t2 , ~  -~--i(i ; 

n ,o(ks,)o, (k~,)[ i  + n [" dq~, ,o2(q~,) 
< k ~ l t s ' ( k ~ 4 / 2 p ) l k ; '  2> ---- - -  2"--~ L ~ J (2a) 3 k~4/2lx - -  q~4/2~t + iO" 

(6) 

Relationships (6) fo rm the analytic  solution [2] of the cor responding  Lippman-Sehwinger  integral  equations. 

We introduce the following notation, which will be r equ i red  in the sequel:  

�9 G ff dqi z g2(qt2 ) 
a (k~2/2~) = ~ (2~) s k~2/2b t -  q~e/2l x + iO " 

S dq34 o2 (q34) 
b (k~4/2t0 ----- ~ (2ztp k]4/2Vt - -  q~4/2jx + iO (7) 

Obviously, the pair  amplitudes (6) exist  if the following conditions axe sat isf ied:  

1 + a(k22/2~t) = O, 1 + b(k~4/2~t) = O. (8) 

We wri te  down the homogeneous equation corresponding to express ion  (4): 

dqi2 <ktz[Vt~Jqi2:> <qt2, k3~[TJ(z)[k12, ' ' ka4~-r  ~ <kiz,  ks4iT(z')[k~2, k 3 4 > =  (2~) 3 k~2/2~t--q~2/2~t-]- iO 

ff dq34 ~ k34 [V3~J q34 + (2n)s 2 2 <q~,  klzlT (z')Ik~2, k34~. (9) 
k34/2~ - -  q34/2~t -~- iO 

Since the potentials axe assigned by re la t ions  (5), and the energies  z~2 and zs4 a re  conserved ,  the solution (9) is 
of  the fo rm 
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< k,~, k,, IT (z')l k;_~, kL  > = e (k,,) e (~;,) = (~,) co (k;,) F (z'), (lO) 

z' =: z,2 -F z3,, Z,z = k~,/2F, z ,  = k~4/21 x, 

if conditions (8) are  satisfied.  

Substituting (10) into Eq. (9), the following equation is obtained for the function F(z,):  

F (z') [ 1 q- a (ztz) -F b (z3~)] = 0. (1 1) 

]~ is seen f rom (11) that the homogeneous equation (9) can have an infinite number of solutions ['F(z') is an arb i -  
t r a r y  function] if the following condition is sat isfied:  

[1 + a(z,9 + b (z3,)l = 0. (12) 

This implies that the inhomogeneous equation (4) also has no unique solution if condition (12) is satisfied.  

A n e c e s s a r y  and sufficient condition for the existence of a unique (trivial) solution of the homogeneous 
equation (9) follows f rom Eq. (11): 

[1 q- a(z,z ) + b (zz,)] =/=0, (13) 

if 1 + a  (zl2) ~0;  1 +b(zu) ~ 0. 

w We fur ther  show that a c lass  of separable  potentials can be found with pa rame te r s  for which condi- 
tion 112) is sat isf ied for the physical energy region z, = E +i0. For  s implici ty we assume that kl2=ka4 = ~t, z, = 
~ / p  +t0. 

Oar problem is to find examples of potentials for which the condition 1 + a(~) +b(n) =0, where 

G ~ dq g=(q) 
a(• = ~ (2n) 3 • F + iO 

b(~) = ~ (2~)~ 
co2 (q) 

• - -  q~12~ + iO 

(14) 

According to the Sokhotskii equation, the following represen ta t ion  can be obtained for a(~) and b(~) f rom (14): 

a(x) = ~(~) + i[3(~); b(~) = ~(x) + i~(• (15) 

where  
r  

. q~g2(q) (16) ~ ( ~ ) =  6 Vp dq 
(2:~)~ ~z _ qZ ' 

o 

p(• = - - - - 1  GuZg=(x); t17) 
4u 

i .  q~co2(q) . ~i(x)= 2a 2Q' Vp aqu.--~_~, t18) 
0 

(x) I flx%z (~1. (19) 
4u 

To sat isfy the condition 1 + a(~t) +b(~t) =0, it is n e c e s s a r y  to r equ i r e  that 

- p  ( ~ ) =  ~(x),  1 + ~ ( x ) + ~ ( ~ ) =  0 (20) 

These  conditions automatical ly guarantee the exis tence of nontr ivial  solutions of Eqs. (9) for r e a l  G and ~2, i .e . ,  
Hermit ian  potentials (7). 

Let,  for example,  the functions g(q) and o~ (q) be 

V~ V~ g(q )=  ~=+q2 , co(q)= n=+q= . (21) 

Calculations of the integrals  in (16)-(19) show that for cer ta in  re la t ions  between the p a r am e te r s  ~ ,  ~? and the 
sy s t e m energy ~t~/p conditions (20) a re  satisfied.  
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We have thus shown that for  a given separable  potential  of the fo rm (21) an energy value is found for 
which the homogeneous equation (9) has an infinite number of solutions. Hence, the corresponding inhomo- 
geneous equation (4) also has an infinite number  of solutions. 

We point out that the sat isfact ion of condition (12) for separable  potentials leads to the r e su l t  that the 
sy s t e m of integral  equations der ived  f rom the o p e ra to r  equat ions [3], 

T~z (z') = 62 (zi,) + 6, (z~2) 60 (z') Ta (z'), 

Ts, (z') = t~ (z~) + ta (zs0 60 (z') T~2 (z'), 

where  

Tl~(z') + Tu(z')  = T(z') 

and T(z ' )  sa t is f ies  Eq. (2), has the same proper t i e s  as does the or iginal  equation (1). The cor respondinghomo-  
geneous sys t em can have an infinite number  of solutions,  and the inhomogeneous sys t em can have an infinite 
number  of  solutions or  be incompatible.  The r e su l t s  of this study can be genera l ized  to the sca t te r ing  problem 
of five or  more  bodies under the assumption of pair  interact ions.  

1~ 
2. 
3. 
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A solution is obtained for  the problem of heat conduction in a one-dimensional  r ing  consist ing 
of two sect ions with different  lengths,  heat sources ,  and thermophysica l  pa rame te r s .  

The prob lem of the heat conduction in a r ing  [1] is an example of a boundary-value problem in which the re  
a re  no boundary conditions of the f i r s t ,  second, and th i rd  kinds modeling the effect of the external  medium on 
the sys tem.  In view of the s y m m e t r y  of the problem,  these  conditions a r e  rep laced  by the per iodic i ty  condition 
for the solution. Such "se l f -c losed"  sys tems  may se rve  as mathematical  models of different  p rocesses  of heat 
and mass  t r ans fe r  [2, 3]. 

w 1. Consider the prob lem of determining the t e m p e r a t u r e  field in a one-dimensional  composi te  r ing,  the 
n sect ions of which have different  lengths,  thermophys iea l  p a r a m e t e r s ,  and heat sources .  Any of the sect ions 
may be r e ga r de d  as a sy s t em interact ing with its "environment"  - the other  sect ions.  The initial t empe ra tu r e  
distr ibution in the different  sect ions of the r ing is descr ibed  by different  functions and is discontinuous at the 
contact points,  where boundary conditions of the fourth kind a re  assumed.  Since a one-dimensional  problem is 
considered,  the shape of the r ing is unimportant ,  as in [1]. A l inear  coordinate  x i is introduced for each section,  
xi~ (0 , / i ) ,  i =1, 2 . . . .  , n. The mathemat ica l  formulat ion of the l inear  heat-conduction problem for a composi te  
r ing  takes the fo rm 

07"i 02i'i 
Ot ai--~-i~ = f i + c h 8 ( t ) ,  t ~ 0 ,  xiE(O, l~), (1.1) 

dO O(t) ---- { t, t > 0  
r = r (x~), 8 (t) = ~ ,  o, t ~ o, 
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